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Determination of the compensation band due to 
birefringence with dispersion and large phase 
differences 
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The simple measurement of birefringence by means of a tilting compensator becomes difficult 
and unreliable when large phase differences must be compensated in samples in which disper- 
sion of birefringence differs from that of the compensator. The problem is treated experiment- 
ally and theoretically. The result is a simple correction formula with only one parameter. A 
method to obtain this parameter is presented. Measurements on polycarbonate, polyethylene 
and polyurethane support the assumptions of the theoretical calculations. 

1. Introduct ion 
It is usual, to investigate the birefringence of polymeric 
materials in order to obtain the degree of orientation. 
For this purpose, a polarizing microscope and a com- 
pensator such as a Berek [1], Babinet or Ehringhaus 
[2] is mostly used. With monochromatic light it is 
impossible to identify the zero-order band, because all 
interference fringes are indistinguishable. A correct 
value of the phase difference and therefore the bire- 
fringence is only achieved with the use of the right 
compensation band. It is therefore customary to apply 
white light, because the zero-order-fringe is then nearly 
black. It is only exactly black when the sample and the 
compensator consist of the same material or if they 
have the same dispersion of birefringence. This con- 
dition is not fulfilled for polymeric materials and a 
Calcit, magnesium difluoride or quartz compensator. 
It is the aim of this paper to develop a theory of 
compensation with white light, accounting for disper- 
sion of birefringence and the spectral sensitivity of the 
human eye. 

2. Theory 
A polarizing microscope with compensator and sample 
operates as follows. Parallel light, emitted by a bulb, 
passes a polarizer. This linear polarized light beam 
splits in the sample (which is oriented 45 ~ to the pol- 
arization plane) into two equi-intensive beams 
propagating with different refractive indexes. 
Therefore an optical path difference results 

E = Ansd~ (1) 

d~ is the thickness of the sample and An, the birefrin- 
gence. The compensator is oriented 90 ~ to the sample 
therefore reducing the optical path difference by 

F~ = An~d~ (2) 

with Ane as the effective birefringence and de the effec- 
tive thickness of the compensator plate. The excess 
optical path difference, OPD, of sample and compen- 
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sator yields 

OPD = F~ - F~ (3) 

and the intensity of monochromatic light, L after the 
analysor, which is oriented 90 ~ to the polarisor, is then 
given by 

I(OPD(2)) = �89 1 -  cos -~OPD(2)  (4) 

With a variable compensator, the value of Fc can be 
changed and therewith the optical path difference. 
Equation 4 describes exactly the variation of light 
intensity that is seen, when turning at the compen- 
sator. It is impossible to distinguish the optical path 
difference zero, and an integral multiple of the 
wavelength. Let us no~v introduce the simplest depen- 
dence of birefringence on wavelength. We write for 
sample and compensator 

Ans,c(2) = Ans, c(2rer) + c~,r - Zr~r) (5) 

cq,c are the derivatives of birefringence with respect to 
2 at 2rer, the wavelength at which we want to know the 
phase difference. With Equations 1 to 3 and 5 this 
yields 

OPD(2) = OPD(2rcf) + (,~ - )~rer)(dc~c - -  d~s)(6) 

The argument of the cosinus function in Equation 4 is 
an integral multiple of 2~, when 

dcec - dse~ = n (7) 

and with the same n 

OPD(2ref ) = r / , ~ r e  f (8) 

with n as a positive or negative integer. This result is 
independent of wavelength. In any of these cases the 
resulting intensity vanishes and the fringe, according 
to the conditions, is the darkest one, But this is not the 
zero-order fringe, because the zero-order fringe fulfills 
the condition 

OPD(2~r) = 0 (9) 

The compensation band is therefore n fringes below 
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Figure 1 The dependence of subjective intensity of light on the 
optical path difference at 2~r = 546 nm is numerically calculated 
(Equation 10) with 2uitr a = 350nm, 21,f~ = 750nm, T = 3000K 
and the following values of  (d~e~ - d ~ ) :  @ 0; @ 0.5; @ 2.2; @ 
5.8. The compensation band is, in all cases, at OPO()~ref) = 0 and 
the darkest fringe is at OPD(2~er) = [d~0~o - ds~]z)~ f. 

the darkest fringe. This effect is called "fringe jump- 
ing" [3, 4]. Focusing on the darkest fringe yields to a 
"phase-difference" Fd~,k, which is n2~r above the cor- 
rect value F(2r~f). In order to see what happens when 
d~c~ - d ~  is not an integral, the intensity can be 
calculated numerically with the aid of 

l ( O P D ( 2 r e f )  ) = f ?  0(2 ,  T) sens(2) 

x 1 - cos ~ [OPD(2,ef) 

+ ( 2 -  2~er)(dce~ - dsC~s)]}) d2 (10) 

Q(2, T) is the black-body intensity distribution [5] 

0(2, T) = 2 h c 2 / 2 S [ e x p ( + )  - 1] (11) 

with T the absolute temperature, c the speed of light, 
h the Planck constant and kB the Boltzmann constant 
and sens(2) is a approximation for the spectral sen- 
sitivity of the human eye [6] 

~52 
sens(2) = [(2 - 2m~x): + 6] 2 (12) 

with 2m~ x = 555 nm and 6 = 4000 nm 2. The intensity 
integral in Equation 10 was computed from the lower 
limit 2oltr . to the upper limit 2~nfr, only, because the 
other wavelengths do not contribute due to the sen- 
sitivity of the human eye. The results are drawn in 
Fig. 1. 

With thin samples the factor dceo - d s e s  is very 
small in comparison to unity and therefore the darkest 
band is the zero-order fringe. When, on the other 
hand, ec and c~, are equal or nearly equal, this factor is 
also very small and the darkest band and compensa- 
tion band are identical. But when the samples, and 
therefore the compensation plate, are thicker and have 
a different dispersion of birefringence, the factor 
dcc~ - d~,  increases. When it is equal to 0.5 there 
are two fringes in the interference pattern, both con- 
sidered to have the same darkness. If  the factor is 
in the range between 0.5 and 1.5, the darkest fringe 
is one order above the compensation band, etc. (see 
Fig. l). 

The phase difference can therefore be calculated 
according to 

F(2,er) = Faa,k -- [dc~c - d~c~slz)~,ef (13) 

with the square bracket defined as 

[X]z = integral number next to x (14) 

For simplicity we can introduce 

d c oc Fdark ; and d~ O(5 Fdark (15) 

This is a reasonable assumption, because a sample 
twice as thick needs a compensator with twice the 
effective thickness. Therefore, the results of measure- 
ments, focusing on the darkest fringe, yield twice the 
"phase difference". Thus Equation 13 yields 

F(2ref)  = Fdark - -  t_ Fc, s AZ 2ref (16)  

where Fc. s is a constant which depends on the material 
of the compensator and the sample. 

F~.s can be measured using the following method. 
The thickness of the sample is increased until two 
"equi-dark" fringes are observed for the first time. In 
this state the term in the square brackets in Equation 
16 is equal to 0.5 and therefore 

V0,~ = 2Fdark (17) 

TO obtain greater accuracy of the value of Fc,~ the 
thickness can be increased until there are two "equi- 
dark" fringes again and the term in the square brack- 
ets is equal to 1.5, 2.5, 3 . 5 , . . . ,  etc. Once the value of 
the correction constant Fc, s for a combination of com- 
pensator and sample is determined, further measure- 
ments can be obtained with this combination by using 
Equation 16. 

3. Experiments 
In polymers there exists an easier way to increase 
the path difference continuously. During stretching 
the polymer molecules become oriented and there- 
fore birefringence occurs, increasing with the strain 
[7]. 

Samples of polycarbonate of bisphenol A (Macro- 
lon 2304), low-density polyethylene (LDPE 1810) and 
polyurethane (chemical components and their weight 
fractions : polyethylene-adipate (M ~- 2000) : diphenyl- 
methane-4,4'di-isocyanate : 1,4 butanediol = 1 : 8.45 : 
7.22; 57.7% hard segments) are stretched under a 
microscope (Leitz Orthoplan Pol). The phase differ- 
ence is measured simultaneously with a compensator 
after Berek [1] (Leitz 1054 K, Calcit). This compen- 
sator has a maximum phase difference of about 
18 000 nm (33 orders). Larger phase differences have 
been compensated with additional quartz plates 
(11 000 nm, 20 orders; 23 000 nm, 42 orders). The dis- 
persion of birefringence of Calcit and quartz is nearly 
the same. The number of fringe jumps is measured 
dependent on the phase difference of the darkest 
fringe. The results are drawn in Fig. 2. 

Fringe jumping was observed up to a difference of 
ten orders (polycarbonate) between the compensation 
band and the darkest fringe. 
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Figure 2 The dependence of the number of fringe jumps on Fd~k 
for polycarbonate (PC), polyurethane (PU) and polyethylene (PE). 
(e) Experimentally observed jumps at several samples from the 
lower to the upper point, ( ) calculated using Equation 16 and 
the parameters listed in Table I. Fc,PE is negative and so therefore 
is the value of Fdar~ below F(2r~r). 

4. Results and discussion 
From the plots in Fig. 2 one can calculate the compen- 
sator-sample specific constant Fc, s. The results are 
given in Table I. The observed jumps (Fig. 2) are fairly 
well reproduced by the calculations (Equation 16). 

On first sight it seems to be better to measure the 
point where both fringes are "equi-dark" with an 
objective method, such as a photosensitive device. But 
this is not the usual method of obtaining the phase 
differences. Furthermore, the spectral sensitivity of 
the human eye may differ from that of the photosen- 
sitive device and therefore different correction con- 
stants are observed. This advantage compensates the 
subjectiveness of the measurements with the eye. 

With the developed method there need be no know- 
ledge of the dispersion of birefringence in order to 
measure the birefringence. Other methods need this 
information to calculate the fringe jumps [8] or count 

T A B L E  I Correction constants for polycarbonate (PC), pol- 
yurethane (PU), polyethylene (PE) and a Calcit (C) compensator 

Fc,Pc + 4550 nm 
Fc, eu + 3900 nm 
Fc,rE -- 6000 nm 

the order of interference from the end of a wedge- 
shaped sample [9]. 

The assumption of a linear dispersion of birefrin- 
gence dependent on the wavelength is not critical, 
because of the broad spectral sensitivity of the human 
eye and the average linear dispersion of birefringence. 
There is a good agreement between the experimental 
results and calculations. 
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